

Advanced CCD and CMOS Image Sensor Technology at MIT Lincoln Laboratory

Vyshnavi Suntharalingam American Physical Society March Meeting

27 February 2012

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CCD Focal Planes on Astronomical Telescopes

NASA Chandra X-ray Great Observatory Launched July 1999

APS Boston- 3 VS 02/27/12

http://chandra.harvard.edu/

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Wavelength Ranges for Detectors

The Silicon Advantage

- Abundant
- Elemental semiconductor
- Can be highly purified (<ppb)
 - Controlled amounted of impurities can be added
- Forms strong covalent bonds with itself and with Oxygen
 - High melting point
 - c-Si: 1440°C; SiO₂: 1700°C
 - SiO₂ can be used for isolation and protection
- Can combine with halogens and hydrogen if there is no oxygen

Face-Centered Cubic Diamond Crystal Lattice

300-mm Wafer (Intel)

Photoelectron Creation

- Photons striking the semiconductor excite electrons from the Valence band into the Conduction band
- Absorption occurs for $h_V \ge Eg$
 - Or E_{photon} = hc/λ ≥ Eg

Intrinsic Semiconductor

Symbol	E _g (eV)	λ _c (μm)
Si	1.12	1.1
InGaAs	0.73 - 0.48	1.68* - 2.6
HgCdTe	1.00 - 0.07	1.24 - 18
InSb	0.23	5.5
Si:As	0.05	25

 $\lambda c = 1.238 / E_g (eV)$

h = Planck's constant v = frequency of light = λ/c $E_g =$ Energy Gap

*Lattice matched InGaAs (In_{0.53}Ga_{0.47}As)

Detection and Vertical Confinement

Basic CCD Structure

CCD Operation

http://learn.hamamatsu.com/articles/threephase.html

CMOS Active Pixel Sensor (APS)

CCD imager

- Pros
 - Still used in highest performance applications
 - Best QE, lowest noise
- Cons
 - Sensitive to proton damage in space applications

- Pros
 - Provides on-chip electronics
- Cons
 - Modest imaging performance for monolithic

Effect of Space Environment on CCD Performance: SBV Image Comparison

- Radiation-induced traps in silicon capture electrons during charge transfer and release as trailing charge
- Recent CCD performance improvements
 - Smaller transfer distances
 - Channel engineering
 - Lower temperature
- Better performance with CMOS devices with few/no transfers

Back-Illuminated Structure

- Front illumination (FI)
 - Cheaper to build
 - Absorption in overlying films
 - Reflection losses
- Back illumination (BI)
 - More expensive, but becoming more common
 - Direct coupling of photons to active silicon volume
 - AR coatings enable nearly 100% QE
- Good back-surface treatment required to avoid photoelectron loss
 - Boron implant and laser anneal
 - e2V, MIT/LL
 - MBE
 - JPL, MIT/LL
 - Chemisorption coating that produces positive charge
 - University of Arizona (Lesser)

Anti-Reflection Coatings

- Minimize reflection from air (n≈1)/ silicon (n≈4) interface
 - Typically Hafnium oxide for single layer ($\lambda/4$) coatings
 - Specialized coatings developed with two layers or graded thicknesses

Photon Absorption Length in Silicon

Effect of Silicon Thickness on NIR Spectral Response

- Near-IR response requires thicker silicon
 - Specialized material with resistivity > 3000 ohm-cm
- Considerations:
 - Increased PSF with large undepleted depth

Effects of Partial Depletion

- Full depletion essential for minimal charge spreading (high MTF)
- Methods to ensure full depletion
 - Thin device
 - High-resistivity substrate
 - High clock voltages
 - Bias back-surface p⁺ negative

• Voltage bias across sensor produces high resolution in thick imagers

UV-Sensitive Silicon Detectors

- UV (<400 nm) is challenging
 - Shallow penetration depth of radiation
 - Requires extremely thin, doped surface layer
- Demonstrated near 100% internal quantum efficiency, temporally stable
- Applicable to improved softx-ray response below 500 eV

- Fully processed imager wafers are chemically thinned to typically 40-50µm
- Grow 5nm of p+ Si epitaxially on the back surface at ~430°C
 - Epitaxially doped layer << absorption length
 - Absorption length <10 nm at λ =200-350 nm

Lincoln Microelectronics Laboratory

70,000 ft² total: 8,100 ft² class 10; 10,000 ft² class 100

Application Areas

- High performance CCD imagers
- Photon-counting APD arrays
- Low power silicon-on-insulator CMOS
- Rad-hard and space electronics
- Superconducting electronics
- •Microelectromechanical RF/optical switches

Impact of the Microelectronics Lab

Growth in Wafer and Device Sizes

Pan-STARRS Mission (Panoramic Survey and Rapid Response System)

High-cadence, wide-field surveys for detection of asteroids and transient phenomena

- Four, 1.8-m aperture telescopes
 - m_v ~24
 - 30-60 sec exposure
 - FOV: 3 degrees
 - Spatial sampling: 0.3 arcsec
 - Survey Mode: 6,000deg² /night

Gigapixel Astronomy: Technology Goals

- Goal 1: Build the largest and most cost effective astronomy CCD focal planes made
 - Large CCD imager tiles
 - High yield
 - Redundant optics design
 - Allow for missing cells and seam loss
- Goal 2: Remove translational atmospheric distortions ("de-twinkle")
 - Use Orthogonal CCD structure
 - Organize imager chip into independently operable Orthogonal Transfer CCD (OTCCD) cells

Image Motion from Atmospheric Turbulence (de-Twinkle)

1995: Orthogonal Transfer CCD (OTCCD)

- Charge transfer in arbitrary directions
- Can noiselessly remove blur due to scene or platform motion
 - Ground-based astronomy (atmospheric effects)
 - Imaging from unstable platforms (e.g., satellites)

Laboratory Demo of Motion Compensation

CCD camera spring mounted

OTCCD gates fixed during image acquisition

OTCCD gates tracking image motion

1997: Application of OTCCDs in Astronomy

Orthogonal Transfer Array

- New device paradigm
 - 2D array of independent OTCCDs
 - Independent clocking and readout of OTCCDs
- Advantages
 - Enables spatially varying image motion correction
 - Isolated defective cells tolerable (higher yield)

- Similar techniques for achieving low noise in CCD or CMOS sensors
 - Minimize sense node capacitance
 - Minimize sense FET noise voltage
 - Employ correlated double sampling to correct for reset noise

Charge-sensing Amplifier

Sense-node Capacitance ~ 5 fF $(20 \ \mu V/e^{-})$

Comparison of MOSFET and pJFET-based Output Circuits

Device Fabrication and Sample Imagery

- Four OTAs on 150-mm wafer (die size 49.5×50.1 mm)
- Four-poly, n-buried-channel process
- Fabricated on 5,000 Ω·cm floatzone silicon wafers
- Back-illuminated devices thinned to 75 μm

Image from back-illuminated OTA 10-µm pixel, 22.6 Mpixels

150-mm wafer with four OTAs

Photo of pixel array

Very large focal plane arrays: Packaging requirements

- Large number (60) of chips
- Minimal seam loss
 - Four-side abuttable
 - Repairable
- Array flatness (+/- 20 microns) under cryogenic operation
- Low noise operation
 - Good electrical isolation
- Moderate wire count

Pan-STARRS Gigapixel Camera

Images from first light (August 2007)

60 OTAs; 1.36 Gpixels

CMOS Active Pixel Sensor (APS)

CCD imager

- Pros
 - Still used in highest performance applications
 - Best QE, lowest noise
- Cons
 - Sensitive to proton damage in space applications

- Pros
 - Provides on-chip electronics
- Cons
 - Modest imaging performance for monolithic

Four-Side Abuttable 3-D CMOS Image Sensor Development

Conventional Monolithic CMOS Image Sensor

- Pixel electronics and detectors share area
- Fill factor loss
- Co-optimized fabrication
- Control and support electronics placed outside of imaging area

- 100% fill factor detector
- Fabrication optimized by layer function
- Local image processing
 - Power and noise management
- Scalable to large-area focal planes

Special Scanning Techniques Supported by CMOS

- Different scanning methods are available to reduce the number of pixels being read:
 - Allows for higher frame rate or lower pixel rate (reduction in noise)
 - Can reduce power consumption due to reduced data

APS Boston- 37 VS 02/27/12 From Hoffman, Loose, Suntharalingam, SDW 2005 Binning is more difficult to

LINCOLN LABORATORY implement in CMOS than in CCDS.

Geiger-Mode Imager: Photon-to-Digital Conversion

APD Structure and Operation

Gain of an APD

APS Boston- 40 VS 02/27/12 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Reset and Quenching

Pixel Block Diagram

3-Tier 3DIC Cross-Section

Three FDSOI CMOS Tiers, total active circuit height ~ 21 um

Tier 1 bottom, Tier 2 and Tier 3 inverted and bonded on top, substrates removed 11 metal interconnect layers thick RF top metal Dense unrestricted 3D vias for electrical connections between tiers

Example of Multiframe Processing

- CCD imagers continue to demonstrate the highest performance for large-format, broad spectral response, scientific applications
 - Leverage enormous investment in silicon-based microelectronics
- CMOS technology can bring many attractive features to astronomical detectors via 3D integration
 - Gm-APDs for Quantum-limited sensitivity
 - Pixel-level digitization and noiseless readout
- Continued and desired improvements
 - Higher data rates without a noise penalty
 - Flexible readout modes with electronic shuttering
 - On-chip computation and data thinning
 - Design for yield
- Will we soon enter the era of smaller, smarter telescopes?