The basic physics of astronomical detectors Our Eyes on the Universe

James W. Beletic

27 February 2012

Teledyne Imaging Sensors

Detector technologies involve nearly all areas of Physics and Engineering

The Generation, Propagation & Detection of Light

Optical and Infrared Astronomy (0.3 to 25 μm)

Two basic parts

Telescope to collect and focus light

Instrument to measure light

Optical and Infrared Astronomy (0.3 to 25 μm)

Two basic parts

Orion – In visible and infrared light

J.W. Beletic – APS (Boston) – Feb 2012

6

Instrument goal is to measure a 3-D data cube

With appropriate apologies to Foveon and 3rd Gen IR

The Electromagnetic Spectrum

Atmospheric transmission

Not all of the light gets through atmosphere to ground-based telescopes

Spectral Bands

Defined by atmospheric transmission & detector material properties

Energy of a photon

h = Planck constant (6.63×10⁻³⁴ Joule•sec) v = frequency of light (cycles/sec) = λ/c

E = hv

	Band	Energy (eV)	Wavelength (µm)		
	UV	4.13	0.3		
	Vis	2.48	0.5		
	Vis	1.77	0.7		
Nota Ber	NIR	1.24	1.0		
IR Indus	SWIR	0.50	2.5		
definitio	MWIR	0.25	5.0		
NOT th	LWIR	0.12	10.0		
astronome	VLWIR	0.06	20.0		

- Energy of photons is measured in electron-volts (eV)
- eV = energy that an electron gets when it "falls" through a 1 volt potential difference.

JWST - James Webb Space Telescope

15 Teledyne 2K×2K infrared arrays on board (63 million pixels)

- International collaboration
- 6.5 meter primary mirror and tennis court size sunshield
- 2018 launch on Ariane 5 rocket
- L2 orbit (1.5 million km from Earth)

NIRCam (Near Infrared Camera)

An electron-volt (eV) is extremely small

J.W. Beletic – APS (Boston) – Feb 2012

- The energy of a photon is **VERY** small
 - Energy of SWIR (2.5 μ m) photon is 0.5 eV
- In 5 years, JWST will take ~1 million images
 - Total # SWIR photons detected $\approx 3.6 \times 10^{16}$
 - Total energy detected $\approx 1.8 \times 10^{16} \text{ eV}$
- Drop peanut M&M[®] candy (~2g) from height of 15 cm (~6 inches)
 - − Potential energy \approx 1.8 x 10¹⁶ eV

15 cm peanut M&M[®] drop is equal to the energy detected during 5 year operation of the James Webb Space Telescope!

m

The Ideal Detector

- Detect 100% of photons
- Each photon detected as a delta function
- Large number of pixels
- Time tag for each photon
- Measure photon wavelength
- Measure photon polarization

- ✓ Up to 98% quantum efficiency
- \checkmark One electron for each photon
- \checkmark ~1,400 million pixels (>10⁹)
- ✓ No framing detectors✓ APDs & event driven readout
- ► No defined by filter
 ✓ Foveon, 3rd Gen IR
- ☑ No defined by filter Can place filter on detector

Plus READOUT NOISE and other "features"

6 steps of optical / IR photon detection

6 steps of optical / IR photon detection

18

Crystals are excellent detectors of light

Structure of An Atom

Protons (+) and neutrons in the nucleus with electrons orbiting

Silicon crystal lattice

- Electrons are trapped in the crystal lattice
 - by electric field of protons
- Light energy can free an electron from the grip of the protons, allowing the electron to roam about the crystal
 - creates an "electron-hole" pair.
- The photocharge can be collected and amplified, so that light is detected
- The light energy required to free an electron depends on the material.

Charge Generation

Silicon CCD

Similar physics for IR materials

The Astronomer's Periodic Table

Periodic Table																
1 Hydrogen										II	III	IV	V	VI		2 Ho Helium 4.0
3 4 Li Be uthum Berstium 6.8 9.0 11 12 Na Wig	A contract of the second s										6 Boron 10.8 13	Carbon 12.0 14 Si	7 Nitro gen 14.0 15	8 Origen 18.0 18	9 Fluorine 19.0 17	10 Ne 20.2 18 Ar
23:0 9:0 19 20 K Ca Pota ssium Cakium 37 38 Rb St Rubidium 85.6 55 56 Cassium 132.9 Cassium 132.9 S7 58	21 Soc Soandium 45.0 39 Yarium 88.9 57.71	22 Titanium 47.9 40 2irconium 9.1.2 72 44 72 40 2irconium 9.1.2 72 44 44 10 44	23 Vanadium 50.9 41 ND Nobium 92.9 73 Ta Tantalum 181.0 105	24 Chromium 52.0 42 Wi O Molode num 9 74 VA Tung sten 183.9 106	25 Mangane se 54.9 43 T C Technetium 9 75 Ro Fhenium 107	26 Fo 55.9 44 RU Dythenium 101.0 78 OS Cernium 108	27 Colbalt 55.9 45 Rhodium 102.9 77 IF Hidium 192.2 109	28 Nickel 58.7 48 Palladium 108.4 78 Patinum 195.1	29 Cu copper 53.5 47 ACJ Silver 107.9 79 AU Gold Gold 197.0	20 20 55.4 48 Cadmium 112.4 80 Hg Mercury 200.6	22.0 31 Ga Ga Gallium 897 49 In hdium 114.8 81 Thallium Thallium	28.1 32 Germanium 72.8 50 50 50 50 50 50 82 18.7 82 Pb Lead 207.2	31.0 33 Ass Arsenic 74.9 51 Sb Antimony 121.8 83 Bismuth 209.0	52.1 34 500 500 52 52 52 52 52 52 52 52 52 52 52 52 52	Bromine 35.5 Bromine 79.9 53 koline 125.9 85 Attaine 210.0	40.0 36 Kr Krpton 83.8 54 Xe Xen on 131.3 86 Rn Radon 222.0
Fr Ra Frandum Radium 223.0 226.0		Referencedam 261	Db Dubnium 262	Sg Seaborgium 263	Bohrium 262	HS Hassium 265	Meimerium 266	Ulunailium 272						Ty received a	pes of Elemen ⁸	tts Keer:
Detector Families earth metals Si - IV semiconductor HgCdTe - II-VI semiconductor InGaAs & InSb - III-V semiconductors InAs + GaSb - III-V Type 2 Strained Layer Superlattice (SLS) tak																
69 00 Ac Th Atnium 132.9 232.0	91 Pa Protactinium 231.0	92 U Uranium 238.0	93 Np Neptureum 237,0	94 Pu Putenium 242.0	95 Am Ameridum 243.0	96 Cm Curium 247.0	97 Bk Berkelium 247.0	99 Cf Cali fornium 251.0	99 ES Bristeinium 254.0	100 Frm Fermium 253 (2	101 MCI Mendelesium 255.0	102 NO Nobelium 254.0	103 Las F Las renoium 257.0	F	on-metak obkgeses	

Photon Detection

For an electron to be excited from the conduction band to the valence band

$$hv > E_{g}$$

Conduction Band

 $\lambda_{c} = 1.238 / E_{g}$ (eV)

h = Planck constant (6.6310⁻³⁴ Joule•sec) v = frequency of light (cycles/sec) = λ/c $\Xi_g =$ energy gap of material (electron-volts)

Material Name	Symbol	Eg (eV)	λ _c (μm)
Silicon	Si	1.12	1.1
Indium-Gallium-Arsenide	InGaAs	0.73 – 0.48	1.68* – 2.6
Mer-Cad-Tel	HgCdTe	1.00 – 0.07	1.24 – 18
Indium Antimonide	InSb	0.23	5.5
Arsenic doped Silicon	Si:As	0.05	25

*Lattice matched InGaAs (In_{0.53}Ga_{0.47}As)

Tunable Wavelength: Valuable property of HgCdTe

Hg_{1-x}Cd_xTe Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

Bandgap and Cutoff Wavelength as function of Cadmium Fraction (x)

Absorption Depth

The depth of detector material that absorbs 63.2% of the radiation (1-1/e) of the energy is absorbed

1	absorption depth(s)	63.2% of light absorbed
2		86.5%
3		95.0%
4		98.2%

For high QE, thickness of detector material should be \geq 3 absorption depths

Silicon is an indirect bandgap material and is a poor absorber of light as the photon energy approaches the bandgap energy. For an indirect bandgap material, both the laws of conservation of energy and momentum must be observed. To excite an electron from the valence band to the conduction band, silicon must simultaneously absorb a photon and a phonon that compensates for the missing momentum vector.

Absorption Depth of Light in Silicon

Absorption Depth of HgCdTe

Rule of Thumb

Thickness of HgCdTe layer needs to be about equal to the cutoff wavelength

MBE produces highest quality HgCdTe

- Older version of HgCdTe growth is Liquid Phase Epitaxy (LPE)
- Molecular Beam Epitaxy (MBE)
 - Enables very accurate deposition \Rightarrow "bandgap engineering"
 - HgCdTe grown on CdZnTe wafers

wafers grown to date

Teledyne Imaging Sensors

High Quantum Efficiency Visible – Infrared Measured by the European Southern Observatory

Data: Courtesy of ESO, KMOS project

Quantum Yield: One photoelectron for every detected photon

...for most wavelengths of interest to ground-based astronomy

Silicon

For wavelengths that are 30% to 100% of the cutoff wavelength, there will a single electron-hole pair created for every detected photon.

For shorter wavelengths (higher energies), there is an increasing probability of producing multiple electron-hole pairs.

For silicon, this effect commences at ~30% of the cutoff wavelength (λ < 330 nm).

Data from Barry Burke, MIT Lincoln Laboratory

HgCdTe

- Limited data from HgCdTe detectors shows that quantum yield is not significant at 800 nm for a 5400 nm cutoff detector (11% of cutoff wavelength).
- The quantum yield of HgCdTe is still being investigated.

Dark Current Undesirable byproduct of light detecting materials

- The vibration of particles (includes crystal lattice phonons, electrons and holes) has energies described by the Maxwell-Boltzmann distribution. Above absolute zero, some vibration energies may be larger than the bandgap energy, and will cause electron transitions from valence to conduction band.
- Need to cool detectors to limit the flow of electrons due to temperature, i.e. the <u>dark</u> <u>current</u> that exists in the absence of light.
- The smaller the bandgap, the colder the required temperature to limit dark current below other noise sources (e.g. readout noise)

Dark Current of Silicon-based Detectors

Dark Current of e2v CCDs

1E6 MAXIMUM VALUES 1E5 Electrons/sec/15 micron pixel 1E4 Surface **Dark Current** 1E3 1E2 Bulk 1E1 **Dark Current 1E0** 1E-1 1E-2 1E-3 -120 -100 -40 20 -80 -60 -20 40 0 Temperature, °C e2v TECHNOLOGIES

In silicon, dark current usually dominated by surface defects

Dark Current of HgCdTe Detectors

Hybrid CMOS Infrared Imaging Sensors

Three Key Technologies

- Growth and processing of the HgCdTe detector layer
- Design and fabrication of the CMOS readout integrated circuit (ROIC)
- Hybridization of the detector layer to the CMOS ROIC

6 steps of optical / IR photon detection

MOSFET Principles

MOSFET = metal oxide semiconductor field effect transistor

Fluctuations in current flow produce "readout noise" Fluctuations in reset level on gate produces "reset noise"

MOSFET Amplifier Noise

CMOS Pixel Amplifier Types

HgCdTe Sensors for Astronomy State-of-the-art

- Large format
 - 2048×2048 pixels is standard
 - 4096×4096 pixels is in development
- Quantum efficiency
 - 70-90% over wide bandpass; UV through infrared
- Noise
 - Dark current can be made negligible with cooling
 - Readout noise as low as 2-3 electrons with multiple sampling
 - Dynamic range (full well / total noise) of ~10,000 for the best sensors
- What astronomers want to be improved in HgCdTe sensors
 - Latency / Persistence:
 - Operability:
 - LWIR Producibility:

 - Cost:

0.1% degrades science 95% to 99% specs set by cost LWIR more difficult, with lower yield High speed, low noise: 500 Hz frame rate, 128², 3 e- noise IR detectors are ~10× visible CCDs

Teledyne H4RG-15 4K×4K

Teledyne H2RG 2K×2K

Thank you for your attention

Teledyne Enabling humankind to understand the Universe and our place in it