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The Physics of the Universe

The Generation, Propagation & Detection of LightThe Generation, Propagation & Detection of Light
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Optical and Infrared Astronomy
(0.3 to 25 μm)

Two basic parts

Telescope to collect and focus light Instrument to measure light

Instrument
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Orion - visible

Orion – by IRAS

Orion – In visible and infrared light
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The Eagle Nebula 
as seen by HST

The Eagle Nebula
as seen with Hubble
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The Eagle Nebula
as seen in the infrared

M. J. McCaughrean and M. Andersen, 1994
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Instrument goal is to measure a 3-D data cube

But most detectors are 2-dimensional !
• Detectors are
• Can’t measure color (exception: x-rays)
• Only measure intensity

Optics of the instrument map a portion of 
the 3-D data cube onto the 2-D detector

BLACK & WHITEWHITE

Wave
length

Intensity

With appropriate apologies to Foveon and 3rd Gen IR

Declination

Right Ascension
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The Electromagnetic Spectrum
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Atmospheric Transmission

Atmospheric transmission
Not all of the light gets through atmosphere to ground-based telescopes

J
1.1-1.4

H
1.5-1.8

K
2.0-2.4

L
3.0-4.0

M
4.5-5.1

Common Astronomical Filters

Wavelength (microns)
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Spectral Bands
Defined by atmospheric transmission & detector material properties

Wavelength (microns)

Atmospheric Transmission

Detector
Zoology
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Energy of a photon

MWIR0.255.0

LWIR0.1210.0 

SWIR0.502.5

VLWIR0.0620.0

Vis1.770.7

NIR1.241.0

Vis2.480.5

UV4.130.3

BandEnergy (eV)Wavelength (μm)

• Energy of photons is measured in electron-volts (eV)
• eV = energy that an electron gets when it “falls” through a 1 volt 

potential difference.

Nota Bene:

IR Industry
definitions

NOT the
same for

astronomers !

E = hν
h = Planck constant (6.63×10-34 Joule•sec)
ν = frequency of light (cycles/sec) = λ/c
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JWST  - James Webb Space Telescope
15 Teledyne 2K×2K infrared arrays on board (63 million pixels)

• International collaboration
• 6.5 meter primary mirror and tennis court size sunshield
• 2018 launch on Ariane 5 rocket
• L2 orbit (1.5 million km from Earth)

6.5m mirror

sunshield

Two 2x2 mosaics
of SWIR 2Kx2K 

Two individual 
MWIR 2Kx2K

• Wide field imager
• Studies morphology of objects 

and structure of the universe
• U. Arizona / Lockheed Martin

• Spectrograph
• Measures chemical composition, 

temperature and velocity
• European Space Agency / NASA

1x2 mosaic of MWIR 2Kx2K 

• Acquisition and guiding
• Images guide stars for telescope 

stabilization
• Canadian Space Agency

3 individual MWIR 2Kx2K

Earth

NIRSpec
(Near Infrared Spectrograph)

NIRCam
(Near Infrared Camera)

FGS
(Fine Guidance Sensors)
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An electron-volt 
(eV)

is extremely small
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15 H2RG
2K×2K arrays

63 million pixels
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equal to the energy detected 
during 5 year operation of the 

James Webb Space Telescope!
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• The energy of a photon is VERY small
– Energy of SWIR (2.5 μm) photon is 0.5 eV

• In 5 years, JWST will take ~1 million images
– Total # SWIR photons detected ≈ 3.6 × 1016

– Total energy detected ≈ 1.8 × 1016 eV
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The Ideal Detector

• Detect 100% of photons

• Each photon detected as a
delta function

• Large number of pixels 

• Time tag for each photon

• Measure photon wavelength

• Measure photon polarization

Up to 98% quantum efficiency

One electron for each photon 

~1,400 million pixels (>109)

No - framing detectors 

No – defined by filter

No – defined by filter

Plus READOUT NOISE and other “features”

APDs & event driven readout

Foveon, 3rd Gen IR

Can place filter on detector
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6 steps of optical / IR photon detection

S
en

si
tv

ity

6.  Digitization

1.  Light into detectorAnti-reflection coating
Substrate removal

2.  Charge GenerationDetector Materials
Si, HgCdTe, InSb, Si:As

Quantum
Efficiency

3.  Charge CollectionElectric Fields in detector
collect electrical charge Point Spread Function

Source follower,
CTIA, DI

Source follower,Source follower,
CTIA, DICTIA, DI

4.  Charge-to-
Voltage
Conversion

5.  Signal
Transfer

Random access
or full frame read
Random accessRandom access
or full frame reador full frame read

CMOS

Charge coupled
transfer

Charge coupledCharge coupled
transfertransfer

4.  Charge
Transfer

5.  Charge-to-
Voltage
Conversion

MOSFET
Amplifier
MOSFETMOSFET
AmplifierAmplifier

CCD
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Silicon crystal lattice

Crystals are excellent detectors of light

• Electrons are trapped in the crystal lattice
– by electric field of protons

• Light energy can free an electron from the 
grip of the protons, allowing the electron to 
roam about the crystal

– creates an “electron-hole” pair.
• The photocharge can be collected and 

amplified, so that light is detected
• The light energy required to free an electron 

depends on the material.

• Simple model of atom
– Protons (+) and neutrons in the nucleus 

with electrons orbiting
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Charge Generation

Silicon CCD

Similar physics for 
IR materials
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The Astronomer’s Periodic Table

H1
He

2

METALS
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II III IV V VI

Detector Families
Si - IV semiconductor
HgCdTe              - II-VI semiconductor
InGaAs & InSb   - III-V semiconductors
InAs + GaSb - III-V Type 2 

Strained Layer Superlattice (SLS)
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Photon Detection
Conduction Band

Valence Band
Eg

For an electron to be excited from the
conduction band to the valence band

hν > Eg 

h = Planck constant (6.6310-34 Joule•sec)
ν = frequency of light (cycles/sec) = λ/c

Eg = energy gap of material (electron-volts)

1.68* – 2.60.73 – 0.48InGaAsIndium-Gallium-Arsenide

250.05Si:AsArsenic doped Silicon
5.50.23 InSbIndium Antimonide

1.24 – 181.00 – 0.07HgCdTeMer-Cad-Tel

1.11.12SiSilicon

λc (μm)Eg  (eV)SymbolMaterial Name

λc = 1.238 / Eg (eV)

*Lattice matched InGaAs (In0.53Ga0.47As)
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Tunable Wavelength:  Valuable property of HgCdTe
Hg1-xCdxTe    Modify ratio of Mercury and Cadmium to “tune” the bandgap energy

( )xTxxxEg 211035.5832.081.093.1302.0 432 −×++−+−= −

G. L. Hansen, J. L. Schmidt, T. N. Casselman, J. Appl. Phys. 53(10), 1982, p. 7099
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Absorption Depth
The depth of detector material that absorbs 63.2% of the radiation

(1-1/e) of the energy is absorbed

1  absorption depth(s) 63.2% of light absorbed
2  86.5%
3  95.0% 
4 98.2%

For high QE, thickness of detector material should be ≥ 3 absorption depths

Silicon is an indirect bandgap material and is a 
poor absorber of light as the photon energy 
approaches the bandgap energy. For an indirect 
bandgap material, both the laws of conservation 
of energy and momentum must be observed.  To 
excite an electron from the valence band to the 
conduction band, silicon must simultaneously 
absorb a photon and a phonon that compensates 
for the missing momentum vector.
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Absorption Depth of Light in Silicon
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Quarter wave Hf02 AR Coating

Mike Lesser, U. Arizona

Teledyne Imaging Sensors

e2v technologies
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Absorption Depth of HgCdTe  
Rule of Thumb

Thickness of HgCdTe layer
needs to be about equal
to the cutoff wavelength
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MBE produces highest quality HgCdTe
• Older version of HgCdTe growth is Liquid Phase Epitaxy (LPE)
• Molecular Beam Epitaxy (MBE)

– Enables very accurate deposition ⇒ “bandgap engineering”
– HgCdTe grown on CdZnTe wafers

RIBER 10-in MBE 49 SystemRIBER 10-in MBE 49 System

RIBER 3-in MBE SystemsRIBER 3-in MBE Systems

10 inch diameter 
platen allows 

simultaneous growth 
on four 6x6 cm 

substrates

3 inch diameter 
platen allows 

growth on one 
6x6 cm 

substrate

More than 8000 HgCdTe 
wafers grown to date

Teledyne Imaging Sensors
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High Quantum Efficiency Visible – Infrared
Measured by the European Southern Observatory

Data: Courtesy of ESO, KMOS project
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Silicon

For wavelengths that are 30% to 100% of 
the cutoff wavelength, there will a single 
electron-hole pair created for every 
detected photon.

For shorter wavelengths (higher energies), 
there is an increasing probability of 
producing multiple electron-hole pairs.

For silicon, this effect commences at  ~30% 
of the cutoff wavelength (λ < 330 nm).

Quantum Yield: One photoelectron for every detected photon
…for most wavelengths of interest to ground-based astronomy

HgCdTe

• Limited data from HgCdTe detectors shows that quantum yield is not significant at 
800 nm for a 5400 nm cutoff detector (11% of cutoff wavelength).

• The quantum yield of HgCdTe is still being investigated.

Data from Barry Burke, MIT Lincoln Laboratory
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Dark Current
Undesirable byproduct of light detecting materials

• The vibration of particles (includes crystal lattice phonons, electrons and holes) has 
energies described by the Maxwell-Boltzmann distribution.  Above absolute zero, some 
vibration energies may be larger than the bandgap energy, and will cause electron 
transitions from valence to conduction band.

• Need to cool detectors to limit the flow of electrons due to temperature, i.e. the dark 
current that exists in the absence of light.

• The smaller the bandgap, the colder the required temperature to limit dark current 
below other noise sources (e.g. readout noise)

Fr
ac

tio
n 

of
 la

tti
ce

Energy of vibration

Warmer
Temp

Colder Temp

Eg

These vibrations have 
enough energy to pop 

electron out of the valence 
band of the crystal lattice
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Dark Current of Silicon-based Detectors
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Dark Current of e2v CCDs

e2v TECHNOLOGIES

MAXIMUM VALUES

Surface
Dark Current

Bulk
Dark Current

In silicon, dark current usually dominated by surface defects

e2v technologies
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Dark Current of HgCdTe Detectors

~9
~5 ~2.5

~1.7

Typical InSb
Dark Current

108
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105
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103
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10

1
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23021019017015013011090705030

Temperature (K)

Dark
Current

Electrons
per pixel
per sec

18 micron
square
pixel

10-1

Teledyne Imaging Sensors

HgCdTe cutoff wavelength (microns)
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Hybrid CMOS Infrared Imaging SensorsHybrid CMOS Infrared Imaging Sensors

Three Key Technologies
• Growth and processing of the HgCdTe detector layer
• Design and fabrication of the CMOS readout integrated circuit (ROIC) 
• Hybridization of the detector layer to the CMOS ROIC
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6 steps of optical / IR photon detection

6.  Digitization

1.  Light into detectorAnti-reflection coating
Substrate removal

2.  Charge GenerationDetector Materials
Si, HgCdTe, InSb, Si:As

3.  Charge CollectionElectric Fields in detector
collect electrical charge

Source follower,
CTIA, DI

4.  Charge-to-
Voltage
Conversion

5.  Signal
Transfer

Random access
or full frame read

CMOS

Charge coupled
transfer

4.  Charge
Transfer

5.  Charge-to-
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MOSFET
Amplifier
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MOSFET  Principles

Ga
te

So
ur

ce

D
ra

in

Turn on the MOSFET and 
current flows from source to 
drain

Add charge to gate & the 
current flow changes since the 
effect of the field of the charge 
will reduce the current

Drain

Gate Metal

SemiconductorSource
current

Top view

Side view

MOSFET  =  metal oxide semiconductor field effect transistor

Oxide

Fluctuations in current flow produce “readout noise”
Fluctuations in reset level on gate produces “reset noise”
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Vreset
reset voltage Vdd

amp drain voltage

Output
Charge from

detector

Reset

“Clock” (green)

“Bias voltage” (purple)

MOSFET Amplifier Noise

Reset Noise
• 50 to 100 e- rms

Read Noise
• 1.5 to 10 e- rms

Correlated Double 
Sample (CDS)

• Reset
• Read
• Put charge on gate
• Read
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Non-destructive readout enables reduction of noise from multiple samples

Simple Theory (no 1/f noise)

Measured

H2RG array
2.5 micron cutoff

Temperature = 77K

CDS = correlated double sample

Example of Noise vs Number 
of Fowler Samples
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CMOS Pixel Amplifier TypesCMOS Pixel Amplifier Types
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• What astronomers want to be improved in HgCdTe sensors
– Latency / Persistence:  0.1% degrades science
– Operability: 95% to 99% specs set by cost
– LWIR Producibility: LWIR more difficult, with lower yield
– High speed, low noise: 500 Hz frame rate, 1282, 3 e- noise
– Cost: IR detectors are ~10× visible CCDs
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– LWIR Producibility: LWIR more difficult, with lower yield
– High speed, low noise: 500 Hz frame rate, 1282, 3 e- noise
– Cost: IR detectors are ~10× visible CCDs

• Large format
– 2048×2048 pixels is standard
– 4096×4096 pixels is in development

• Quantum efficiency
– 70-90% over wide bandpass; UV through infrared

• Noise
– Dark current can be made negligible with cooling
– Readout noise as low as 2-3 electrons with multiple sampling
– Dynamic range (full well / total noise) of ~10,000 for the best sensors

• Large format
– 2048×2048 pixels is standard
– 4096×4096 pixels is in development

• Quantum efficiency
– 70-90% over wide bandpass; UV through infrared

• Noise
– Dark current can be made negligible with cooling
– Readout noise as low as 2-3 electrons with multiple sampling
– Dynamic range (full well / total noise) of ~10,000 for the best sensors

Raytheon VIRGO 2K×2KRaytheon VIRGO 2K×2K

Teledyne H2RG 2K×2KTeledyne H2RG 2K×2K

Teledyne H4RG-15 4K×4KTeledyne H4RG-15 4K×4K
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